Metallation Studies with Pyrimidines

By Alan R. Katrizky,* Hector J. Salgado, Amornsri Chermprapai, and Narayan K. Ponkshe, School of Chemical Sciences, University of East Anglia, Norwich, NR4 7TJ, England and Department of Chemistry, University of Florida, Gainesville, Florida 32611, U.S.A.

2-Alkylamino-4,6-diphenylpyrimidines are acylated only at nitrogen after treatment with lithium di-isopropylamide (LDA). 4,6-Diaryl-1-benzylpyrimidin-2(1H)-ones can be acylated and alkylated at the $\alpha-\mathrm{CH}_{2}$ group. 1-Methyl-4,6-di-p-tolylpyrimidin-2(1H)-one forms a carbanion which undergoes dimerisation.

As part of a larger study of heterocycle stabilised carbanions, ${ }^{1}$ we have investigated pyrimidines: (a) 2 -alkylamino-4,6-diphenylpyrimidines to attempt to generate carbanions of type (9), and (b) 1 -substituted 4,6-diphenylpyrimidin- $2(1 \mathrm{H})$-ones to examine carbanions of type (18).

(1)

(2)

(3) $R=H, \quad R^{\prime}=M e$
(4) $R=H, R^{\prime}=E t$
(5) $R=H, R^{\prime}=\mathrm{Pr}^{n}$
(6) $R=P h, R^{\prime}=H$
(7) $R=M e R^{\prime}=H$

(8)

(9)
(10) $R^{\prime}=M e$
(11) $\mathrm{R}^{\prime}=\mathrm{Et}$
(12) $\mathrm{R}^{\prime}=\mathrm{Pr}^{\boldsymbol{n}}$
Scheme 1

2-Alkylaminopyrimidines.-4,6-Diphenylpyrimidin$2(1 \mathrm{H})$-one (1) is converted by phosphoryl chloride into 2 -chloro-4,6-diphenylpyrimidine (2). ${ }^{2}$ This reacts readily with primary and secondary amines (ethylamine, npropylamine, n -butylamine, and N -methylaniline) to give the corresponding 2 -alkylaminopyrimidines (3)-(6) (Table 1). The analogous 2-dimethylamino-derivative

(13) $\mathrm{Ar}=\mathrm{Ph}$
a; $R=P h$
(16) $\mathrm{Ar}=\mathrm{Ph}$
(14) $\mathrm{Ar}=p-\mathrm{Tol}$
b; $R=H$
(17) $\mathrm{Ar}=\mathrm{p}-\mathrm{Tol}$

(20) $A r=P h$
(18) $\mathrm{Ar}=\mathrm{Ph}$
(21) $\mathrm{Ar}=p-\mathrm{Tol}$
(19) $\mathrm{Ar}=p-\mathrm{Tol}$

E	E
$a ; H$	f; Eto
b; D	g ; Ph
c; Ac	$h ; p-$
d; Bz	i : Me
e; $\mathrm{p}-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CO}$	j; Et

Scheme 2
(7) was obtained by ring synthesis from dibenzoylmethane and NN -dimethylguanidine. Structures of all the compounds were confirmed by their spectral data (Table 2).
Treatment of the 2 -alkylamino-4,6-diphenylpyrimidines (3)-(5) with lithium di-isopropylamide (LDA) gave the mono-anion (8), but not the dianion (9) : subsequent treatment with p-toluoyl chloride yielded amides (10)-(12) (Table 3). Structures were confirmed by their spectral data (Table 4): in particular the low $v(\mathrm{C}=\mathrm{O})$ excludes the possibility that the acyl group is attached to a cyclic nitrogen atom. Use of excess LDA mainly gave the known ${ }^{3} N N$-di-isopropyl- p-toluamide.
4,6-Diaryl-1-benzylpyrimidin-2(1H)-ones.-The diaroylmethanes (13) and (14) reacted with benzylurea (15a) to give the 4,6-diaryl-1-benzylpyrimidin-2(1H)-

Table 1
Preparation of 2-alkylamino-4,6-diphenylpyrimidines (3)-(7)

No.	R	R'	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)	Crystal form	Cryst. solvent	Found (\%)			Required (\%)		
							C	H	N	C	H	N
(3)	H	Me	66-68	49	Needles	EtOH	78.2	6.1	15.1	78.5	6.2	15.3
(4)	H	Et	96-99	51	Prisms	EtOH	78.7	6.7	14.5	78.9	6.6	14.5
(5)	H	Pr^{n}	58-61	58	Plates	EtOH	78.8	6.8	13.7	79.2	7.0	13.8
(6)	Ph	H	147-147.5	91	Fine needles	95\% EtOH	81.8	5.8	12.4	81.9	5.7	12.5
(7)	Me	H	131.5-132.5	30	Prisms	EtOH	78.5	6.0	15.2	78.5	6.2	15.3

Table 2
I.r. ${ }^{a}$ and ${ }^{1} \mathrm{H}$ n.m.r. $(\delta, 60 \mathrm{MHz})^{b}$ spectral data of 2 -alkylamino-4,6-diphenylpyrimidines (3)-(7)

No. (3)	R	R'	$\begin{aligned} & \text { I.r. } \\ & \text { NH } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	N.m.r.				
				$=-\mathrm{CH}_{2}-\mathrm{R}^{\prime}$				Aromatic
(3)	H	Me	3280	$\begin{gathered} 5.35 \\ (1 \mathrm{H}, \mathrm{bm}) \end{gathered}$	$\begin{gathered} 3.65 \\ (2 \mathrm{H}, \mathrm{qn}) \end{gathered}$	$\begin{gathered} 1.33 \\ (3 \mathrm{H}, \mathrm{t}) \end{gathered}$		$\begin{gathered} 7.8 \\ (11 \mathrm{H}, \mathrm{~m}) \end{gathered}$
(4)	H	Et	3250	$\begin{aligned} & 5.4 \\ & (1 \mathrm{H}, \mathrm{bm}) \end{aligned}$	$\begin{gathered} 3.5 \\ (2 \mathrm{H}, \mathrm{q}) \end{gathered}$	$\begin{aligned} & 1.5 \\ & (2 \mathrm{H}, \mathrm{~m}) \end{aligned}$	$\left(\begin{array}{l} 1.0 \\ \mathrm{H}, \mathrm{t}) \end{array}\right.$	$\begin{gathered} 7.8 \\ (11 \mathrm{H}, \mathrm{~m}) \end{gathered}$
(5)	H	Pr^{n}	3280	$\begin{gathered} 5.9 \\ (1 \mathrm{H}, \mathrm{t}) \end{gathered}$	centred at 3.35 ($2 \mathrm{H}, \mathrm{bm}$)	$\begin{gathered} 0.9 \\ (3 \mathrm{H}, \mathrm{~d}) \end{gathered}$	$\begin{gathered} 1.4 \\ (4 \mathrm{H}, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 7.8 \\ (11 \mathrm{H}, \mathrm{~m}) \end{gathered}$
(6)	Ph	H			$\begin{gathered} 3.68 \\ (3 \mathrm{H}, \mathrm{~m}) \end{gathered}$			$\begin{aligned} & 7.12-7.68 \\ & (12 \mathrm{H}, \mathrm{~m}) \\ & 7.9-8.20 \\ & (4 \mathrm{H} . \mathrm{m}) \end{aligned}$
(7)	Me	H			$\begin{array}{r} 3.34 \\ (6 \mathrm{H}, \mathrm{~s}) \end{array}$			$\begin{aligned} & 7.36-7.66 \\ & (7 \mathrm{H}, \mathrm{~m}) \\ & 8.17-8.2 \\ & (4 \mathrm{H}, \mathrm{~m}) \end{aligned}$

${ }^{a} \operatorname{In} \mathrm{CHBr}_{3} . \quad{ }^{b} \mathrm{In} \mathrm{CDCl}_{3} . \quad \mathrm{s}=$ singlet, $\mathrm{bm}=$ broad multiplet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{q} \mathrm{n}=$ quintet, $\mathrm{m}=$ multiplet.
Table 3
Preparation of N-alkyl- N-(4,6-diphenylpyrimidinyl)- p-toluamides (10)-(12)

No.(10)	R^{\prime}	M.p. $\left({ }^{\circ} \mathrm{C}\right) \quad \begin{gathered}\text { Yield } \\ (\%)\end{gathered}$		Cryst. form	Cryst. solvent	Found (\%)			Required (\%)			
				C		H	N	C	H	N		
	Me	128-132	60		Needles	Ether-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)	78.9	5.6	10.6	79.4	5.9	10.7
(11)	Et	135-138	55	Prisms	EtOH	79.4	6.4	10.3	79.6	6.2	10.3	
(12)	$\mathrm{Pr}^{\mathbf{n}}$	91-94	37	Needles	95\% EtOH	79.5	6.5	9.9	79.8	6.5	10.0	

Table 4
I.r. ${ }^{a}$ and ${ }^{1} \mathrm{H}$ n.m.r. $(\delta, 60 \mathrm{MHz})^{b}$ spectral data of N-alkyl- N-(4,6-diphenylpyrimidinyl)-p-toluamides (10)-(12)

No.	\mathbf{R}^{\prime}	$\begin{gathered} \text { I.r. } \\ \left(\mathrm{cm}^{-1}\right) \\ >=0 \end{gathered}$	N.m.r.				
			p-Toluoyl	$\mathrm{N}-\mathrm{CH}_{2}$	- R^{\prime}		Aromatic
(10)	Me	1655	2.27	4.42	1.4		7.4
			(3 H, s)	($2 \mathrm{H}, \mathrm{m}$)	($3 \mathrm{H}, \mathrm{t}$)		(15 H, m)
(11)	Et	1650	2.25	4.35	centred at	1.05	7.5
			($3 \mathrm{H}, \mathrm{s}$)	($2 \mathrm{H}, \mathrm{t}$)	$\begin{aligned} & 1.9 \\ & (2 \mathrm{H} . \mathrm{m}) \end{aligned}$	($3 \mathrm{H}, \mathrm{t}$)	$(15 \mathrm{H}, \mathrm{m})$
(12)	$\mathrm{Pr}^{\mathbf{n}}$	1650	2.28	4.37	$\left(\begin{array}{c}2 \mathrm{H}, \mathrm{m} \\ 1.0\end{array}\right.$	1.65	7.5
			(3 H, s)	($2 \mathrm{H}, \mathrm{t}$)	($3 \mathrm{H}, \mathrm{t}$)	(4 H, m)	(15 H, m)

ones (16) and (17) (cf. ref. 4). We have shown previously that 1-benzyl-4,6-diphenyl-2(1H)-pyridone (22) is converted by LDA into the lithio-derivative (23) which reacts with electrophiles to form α-substituted products (24). We now find that lithio-derivatives (18) and (19) can be formed similarly; they show an intense blue colouration.

The diphenyl carbanions (18) and (19) react with $\mathrm{D}_{2} \mathrm{O}$ to form the deuteriated pyrimidinones (20b) and (21b). Organolithium (18) adds to a variety of electrophiles to
form products ($20 \mathrm{c}-\mathrm{j}$); methyl and ethyl iodide gave the alkylated derivatives (20i) and (20j); ethyl chloroformate the ester (20f); acetyl, benzoyl, and p-toluoyl chloride the ketones (20c), (20d), and (20e); p-tolualdehyde and benzophenone the hydroxy-derivatives (20h) and $(20 \mathrm{~g})$. Organolithium (19) reacted with methyl iodide to give the alkylated derivative (21i). All the compounds were characterised by their spectral data (Table 5).

1-Methyl-4,6-di-p-tolylpyrimidin-2(1H)-one.-Reaction

Table 5
I.r. ${ }^{a}$ and ${ }^{1} \mathrm{H}$ n.m.r. $(\delta, 60 \mathrm{MHz})^{b}$ spectral data of 4,6-diaryl-1-benzylpyrimidin-2-ones (20) and (21)

No.	Alpha substituent	I.r. $\left(\mathrm{cm}^{-1}\right)$			${ }^{1} \mathrm{H}$ N.m.r.				
		Pyridone$\mathrm{C}=\mathrm{O}$	R		$5-\mathrm{H}(\mathrm{~s})$	1'-H	R		
			\bigcirc	$\mathrm{C}=\mathrm{O}$					Aromatic (m)
(20a)	H	1645			6.70	5.2 (s)			$7.52-7.05(15 \mathrm{H})$
(20b)	D	1650			6.70	5.2 (s) ${ }^{\text {c }}$			$7.05-7.52(15 \mathrm{H})$
(20c)	MeCO	1640		1680	6.42	d		2.3 (s)	$6.80-7.82(16 \mathrm{H})$
(20d)	PhCO	1650		1700	6.80	6.65 (s)			$7.2-8.3(20 \mathrm{H})$
(20e)	$p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CO}$	1650		1690	6.72	d		2.28 (s)	$7.0-8.2(20 \mathrm{H})$
(20f)	EtOCO ${ }^{\text {P }}$	1650		1740	6.40	6.30 (s)	4.0 (m)	1.1 (t)	$6.98-7.9$ (15 H)
(20g)	$\mathrm{Ph}_{2} \mathrm{COH}$	1650	3250		6.16	6.0 (s)			$6.74-7.3(25 \mathrm{H})$
(20h)	$p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CHOH}$	1650	3300		6.50	5.86 (d) ${ }^{e}$	5.45 (d) ${ }^{e}$	2.24 (s)	$7.0-8.0$ (14 H)
(20i)	$\mathrm{Me}^{\text {a }}$	1650			6.90	5.5 (q)		1.6 (d)	$7.2-7.8(15 \mathrm{H})$
(20j)	Et	1655			6.50	5.9 (m)	1.2 (m)	0.7 (t)	$6.9-7.9(15 \mathrm{H})$
(21a) f	H	1650			6.60	5.2 (s)			$7.9-7.1(13 \mathrm{H})$
(21b) f	D	1655			6.60	5.15 (s) ${ }^{\text {c }}$			$7.0-8.0(13 \mathrm{H})$
(21i) f	Me	1650			6.50	5.4 (q)		1.75 (d)	$7.85-7.05$ (13 H)

${ }^{a}$ In $\mathrm{CHBr}_{3} . \quad{ }^{b}$ In $\mathrm{CDCl}_{3} . \quad \mathrm{d}=$ doublet, $\mathrm{q}=$ quartet, $\mathrm{s}=$ singlet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet. \quad. Integrates for $1 \mathrm{H} . \quad{ }^{d}$ Overlapped in the aromatic region. ${ }^{e} \mathrm{CH}$, doublet $(J 10 \mathrm{~Hz}) .{ }^{f}$ In addition two singlets (3 H each) are shown at 2.3 and 2.4 p.p.m.
of N-methylurea (15b) with (14) yielded 1 -methylpyrimidinone (25) which formed a deep red colouration with LDA; subsequent addition of electrophiles then merely gave recovered (25). Attempted use of n-butyllithium as base afforded the addition product (30), which shows $v(\mathrm{NH}) 3200 \mathrm{~cm}^{-1}$ and $v(\mathrm{C}=\mathrm{O}) 1650$ (broad).

In the ${ }^{1} \mathrm{H}$ n.m.r., the n-butyl group signals occur at 0.84 $(3 \mathrm{H}, \mathrm{t}), 1.3(4 \mathrm{H}, \mathrm{m})$, and $1.82 \mathrm{p} . \mathrm{p} . \mathrm{m} .(2 \mathrm{H}, \mathrm{m})$. The C methyls resonate as two $3-\mathrm{H}$ singlets near to 2.8 p.p.m. The heterocyclic ring olefinic hydrogens form a 2 Hz split doublet at 4.87 p.p.m. coupled ($J 2 \mathrm{~Hz}$) with the $\mathrm{N}-\mathrm{H}$ proton (broad doublet at 5.74 p.p.m.). These spectral data appear to support a 1,2 -addition to $\mathrm{C}=\mathrm{N}$ to give (30) rather than 1,4 -addition to $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{N}$ to give an isomer, but we have not rigorously excluded the isomeric structure. Sodium borohydride reduces pyrimidin-2ones to dihydro- and tetrahydro-derivatives, ${ }^{5}$ and this provides an analogy for the formation of (30).

However, reaction of (25) with 2,2,6,6-tetramethyl-piperidyl-lithium (LTMP) followed by methyl iodide formed (28) by a 1,6 -addition of the lithio-derivative (26) to a second molecule of (25) to give anion (27). Similarly addition of ethyl iodide produced (29).

The structures (28) and (29) are based on spectral evidence: both (28) and (29) showed $\nu(\mathrm{C}=\mathrm{O})$ (pyrimidinone) at $1650 \mathrm{~cm}^{-1}$ (broad). In the ${ }^{1} \mathrm{H}$ n.m.r. spectra, the ring proton of the undisturbed pyrimidinone ring in (28) gave a singlet at $\delta 6.56\left(5^{\prime}-\mathrm{H}\right)$ and at $\delta 6.62$ in (29) $\left(5^{\prime}-\mathrm{H}\right)$. The corresponding signal in the pyrimidinone (25) was at $\delta 6.64$. In the modified pyrimidinone ring of (28) and (29), the $5-\mathrm{H}$ signal shifted upfield, resonating as a singlet at $\delta 4.54$ and 4.56 respectively. The prochiral
protons of the bridging methylene group were magnetically non-equivalent and gave an AB system in both compounds. In (28) the A-proton appeared at $\delta 4.75$ and the B-proton at $\delta 5.34$ with $J_{\text {gem }} 12 \mathrm{~Hz}$. Similarly in (29) the A-proton appeared at $\delta 4.76$ and the B-proton at δ 5.41 with $J_{\text {gem }} 14 \mathrm{~Hz}$. In (28) and (29) the N-methyl group ($1^{\prime \prime \prime}$ protons) gave a singlet at $\delta 1.70$; in (28) the incorporated methyl gave a singlet at $\delta 2.5$ and in (29), the diastereotopic methylene protons of the incorporated

$T=p-$ tolyl

(30)
Scheme 3
ethyl formed two sextets at $\delta 3.10$ and $\delta 3.90$ with $J_{\text {vic }}$ 7 Hz and $J_{\text {gem }} 14 \mathrm{~Hz}$. The methyl group displayed a triplet at $\delta 0.78$ p.p.m. The aromatic protons in both (28) and (29) displayed a multiplet in the range $\delta 8.0-7.0$.

In the ${ }^{13} \mathrm{C}$ n.m.r. spectra, with off-resonance $\mathrm{C}-\mathrm{H}$ information, for both (28) and (29), the undisturbed pyrimidinone carbonyl carbon gave a singlet at $\delta 169.19$ and at 169.23 respectively [cf. 169.31 in (25)] whilst the modified pyrimidinone carbonyl resonated at $\delta 160.27$ and 160.12 . The aromatic carbons displayed a series of

HA-100 (100 MHz) n.m.r. spectrometers, ${ }^{13} \mathrm{C}$ n.m.r. spectra at 25.05 MHz on a Jeol FX-100 Fourier transform spectrophotometer, and high-resolution mass spectra on an AEI MS-9 spectrometer.

4,6-Diphenylpyrimidin-2-one (1).-Dibenzoylmethane (5 $\mathrm{g}, 22.3 \mathrm{mmol}$), urea ($2.0 \mathrm{~g}, 33.4 \mathrm{mmol}$), toluene-p-sulphonic acid ($5.75 \mathrm{~g}, 33.4 \mathrm{mmol}$), and glacial HOAc (15 ml) were heated under reflux for 48 h and neutralised with aqueous NaOH (12%). The product separated; it was collected, washed with water, dried, and crystallised (EtOH) (m.p. $\left.237-239{ }^{\circ} \mathrm{C}\right)(4.20 \mathrm{~g}, 15 \%)\left[\mathrm{lit.}^{2},{ }^{2}\right.$ m.p. $237-239^{\circ} \mathrm{C}$].

Table 6
${ }^{13} \mathrm{C}$ N.m.r. spectra ${ }^{a}$ of 1,3-disubstituted 1,2,3,6-tetrahydro-6-(1,2-dihydro-2-oxo-4,6-di-p-tolylpyrimidinylmethyl)-4,6-di- p-tolylpyrimidin-2(1H)-ones (28) and (29)

Compd. no.	Carbonyl region (s)		Aromatic region Unassigned multiplet	Olefinic region		Aliphatic region										
			$\overbrace{5-C}$	$\xrightarrow[5]{ }{ }^{\prime}-\mathrm{C}$		$6 \mathrm{C}$(s)	$\underset{(\mathrm{t})}{\mathbf{1}^{\prime \prime}-\mathrm{C}}$	$\begin{gathered} 1^{\prime \prime \prime}-\mathrm{C} \\ (\mathrm{q}) \end{gathered}$	$\underbrace{}_{\substack{\text { Aryl-CH } \\ \text { (q) }}}$				3-N-R			
	${ }_{2} \mathrm{-CO}$	$2^{\prime} \mathrm{CO}$		(d)	(d)											
(28)	169.19	160.27		159.68-126.64	105.30	103.60	(28)	67.15	48.53	30.35	21.48	21.38	21.28	20.91	33.08 (q)	
(29)	169.23	160.12	159.39-126.55	105.20	103.84	(29)	67.73	48.04	30.26	21.50	21.39	21.19	20.90	39.27 (t)	14.96 (q)	

${ }^{a}$ In CDCl_{3} with SiMe_{4} as internal reference.
lines in the range $159.68-126.55$ (Table 6). The 5 and 5^{\prime} ring carbons gave doublets at $\delta 105.30$ and $\delta 103.60$ in (28) and at $\delta 105.20$ and $\delta 103.84$ in (29) [cf. 102.44 in (25)]. In the aliphatic region, the bridging methylene carbon gave a triplet at $\delta_{\mathrm{av}} 48$, the 6 -quaternary carbon a singlet at $\delta_{\text {ar. }} 67$, and the N-methyl, a quartet at $\delta_{\text {av }}$. 30 (Table 6). The inserted methyl in (28) gave a quartet at $\delta 33.08$ whilst in (29), the inserted ethyl gave a triplet at $\delta 39.27$ and a quartet at 14.96 . The C-methyl group gave 4 quartets in the range $\delta 21.50-20.90$ (Table 6).

High-resolution mass spectroscopy showed the molecular ion peak at $m / e 594.29(0.12 \%)$ for (28) and at

(31) $R=M e$
(32) $R=E t$
$608.31(0.05 \%)$ for (29). Both (28) and (29) underwent a retrosynthetic expulsion of the oxopyrimidinylmethyl fragment to give the observed base peaks at $m / e 305.16$ (100%) (31) and 319.17 (100%) (32) respectively.

EXPERIMENTAL

M.p.s were measured on a Reichert hot-stage melting point apparatus and are uncorrected. I.r. spectra were recorded in CHBr_{3} on a Perkin-Elmer 297 spectrophotometer, ${ }^{1} \mathrm{H}$ n.m.r. spectra on Perkin-Elmer R12 (60 MHz) and Varian

2-Chloro-4,6-diphenylpyrimidine (2) (47\%), had m.p. $113-113.5^{\circ} \mathrm{C}\left[\right.$ lit., ${ }^{2 a}$ m.p. $\left.115-116{ }^{\circ} \mathrm{C}\right]$.

General Procedure for the Preparation of 2-Amino-4,6diphenylpyrimidines (3)-(6).-2-Chloro-4,6-diphenylpyrimidine (2) and the appropriate amine were heated under reflux in absolute EtOH for 2 h . [For the preparation of (3), dry EtNH_{2} gas was bubbled through a solution of (2) in absolute EtOH and for (6), the reactants were heated in the absence of absolute EtOH]. Evaporation $\left(100{ }^{\circ} \mathrm{C} / 15\right.$ mmHg) gave the crude product, which was washed with water and crystallised (see Table 1).

2-Dimethylamino-4,6-diphenylpyrimidine (7).-Dibenzoylmethane (l g, 4.46 mmol), $N N$-dimethylguanidine, $\mathrm{HCl}(1 \mathrm{~g}$, $8.16 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.6 \mathrm{~g}, 4.3 \mathrm{mmol})$ were heated under reflux in EtOH (10 ml) for 2 h then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{ml})$ and the extracts washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extracts on evaporation ($100{ }^{\circ} \mathrm{C} / 15 \mathrm{mmHg}$) furnished the product, which was crystallised (see Table 1).

General Procedure for the Preparation of Amides (10)-(12). -To LDA (1 mmol) in dry THF (5 ml) [prepared by adding dropwise n -butyl-lithium in hexane (1 mmol) to di-isopropylamine (1 mmol) at 0 to $-5^{\circ} \mathrm{C}$ under N_{2}] cooled to 0 to $-5{ }^{\circ} \mathrm{C}$ was added 2-alkylaminopyrimidine (3)-(5) (0.5 mmol) in dry THF $(2 \mathrm{ml})$. After 0.5 h at 0 to $-5{ }^{\circ} \mathrm{C}, p$-toluoyl chloride (1 mmol) in dry THF (2 ml) was added. Stirring was continued for a further 4 h at $20^{\circ} \mathrm{C}$, water (5 ml) was then added and the solution extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$; the extracts were washed with aqueous $\mathrm{NaHCO}_{3}(10 \%, 10 \mathrm{ml})$ followed by $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$. The dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ extracts on evaporation ($100^{\circ} \mathrm{C} / 15 \mathrm{mmHg}$) gave the crude product as a yellowish oil which solidified slowly and crystallised from the appropriate solvent (Table 3). Purification of the motherliquor afforded $N N$-di-isopropyl- p-toluamide as the byproduct, m.p. $84{ }^{\circ} \mathrm{C}$ [lit., ${ }^{3}$ m.p. $\left.85-86{ }^{\circ} \mathrm{C}\right]$ as colourless plates [toluene-light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)].

1-Benzyl-4,6-diphenylpyrimidin-2(1H)-one (20a).-Dibenzoylmethane ($5.0 \mathrm{~g}, 20 \mathrm{mmol}$), benzylurea ($4.8 \mathrm{~g}, 32 \mathrm{mmol}$), and toluene- p-sulphonic acid ($7.6 \mathrm{~g}, 40 \mathrm{mmol}$) in glacial HOAc (8 ml) were heated at reflux for 36 h . Cooling and treatment with aqueous (50%) EtOH gave the pyrimidinone
which crystallised from 95% EtOH as prisms ($5.0 \mathrm{~g}, 68 \%$), m.p. $164-165{ }^{\circ} \mathrm{C}$ (Found: C, 81.3; H, 5.4; N, 8.3. $\mathrm{C}_{23}{ }^{-}$ $\mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires C, 81.6; H,5.3; $\mathrm{N}, 8.3 \%$).

1-Benzyl-4,6-di-p-tolylpyrimidin-2(1H)-one (21a).—Di-ptoluoylmethane ($1.0 \mathrm{~g}, 4 \mathrm{mmol}$), benzylurea ($0.95 \mathrm{~g}, 6 \mathrm{mmol}$), and toluene- p-sulphonic acid ($1.4 \mathrm{~g}, 7 \mathrm{mmol}$), in HOAc (1 ml) were heated at reflux for 36 h . Work-up as described for (20a) gave the pyrimidinone (2la) ($0.9 \mathrm{~g}, 62 \%$) as needles from 95% EtOH, m.p. $209-210^{\circ} \mathrm{C}$ (Found: C, $81.9 ; \mathrm{H}$, $6.1 ; \mathrm{N}, 7.6 . \mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 82.0 ; \mathrm{H}, 6.0 ; \mathrm{N}, 7.6 \%\right)$.

1-Methyl-4,6-di-p-tolylpyrimidin-2(1H)-one (25).-Di-ptoluoylmethane ($5.0 \mathrm{~g}, 19 \mathrm{mmol}$), methylurea ($3.1 \mathrm{~g}, 40$ mmol), and toluene- p-sulphonic acid ($7.2 \mathrm{~g}, 37 \mathrm{mmol}$) in HOAc (9 ml) were heated at reflux for 36 h . Work-up as described for (20a) gave the pyrimidinone (25) ($3.5 \mathrm{~g}, 61 \%$) as needles from $95 \% \mathrm{EtOH}$, m.p. $197-199^{\circ} \mathrm{C}$ (Found: C, $78.7 ; \mathrm{H}, 6.3 ; \mathrm{N}, 9.6 . \quad \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 78.6 ; \mathrm{H}, 6.2$; $\mathrm{N}, 9.6 \%) ; \nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1645 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.98-$ $7.22(8 \mathrm{H}, \mathrm{m}), 6.70(1 \mathrm{H}, \mathrm{s}), 2.40(3 \mathrm{H}, \mathrm{s}), 2.39(3 \mathrm{H}, \mathrm{s})$, and 3.40 ($3 \mathrm{H}, \mathrm{s}$).

General Procedure for the Lithiation and Alkylation of 4,6-Diaryl-1-benzylpyrimidin-2(1H)-ones.-LDA (3.0 mmol) was prepared by adding dropwise di-isopropylamine $(0.3 \mathrm{~g}, 3.0$ mmol) to n-butyl-lithium in hexane ($3.1 \mathrm{ml}, 3.0 \mathrm{mmol}$ of $0.96 \mathrm{~m})$ at $-20{ }^{\circ} \mathrm{C}$ under N_{2}. Stirring of the mixture was continued until it became cloudy when dry THF (6 ml) added; the whole was then cooled to $-76^{\circ} \mathrm{C}$ and 4,6 -diaryl-1-benzylpyrimidin-2-one (3.0 mmol) in dry THF (20 ml) was added. After 40 min at $-76{ }^{\circ} \mathrm{C}$, the electrophile (3.0 mmol) in dry THF (5 ml) was added. Stirring was continued for 1 h at $-76{ }^{\circ} \mathrm{C}$ and for a further 10 h at $20^{\circ} \mathrm{C}$. Water (1 ml) was then added and the solvent removed at $40-50{ }^{\circ} \mathrm{C} / 20$ mmHg . The residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{ml})$ was washed with saturated aqueous $\mathrm{NaCl}(30 \mathrm{ml})$ and water $(30 \mathrm{ml})$ and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated at $40-50{ }^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$. The product was separated by crystallisation [$\mathrm{CHCl}_{3}-$ light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)], or prep. t.l.c. and further recrystallised from the appropriate solvent.

The following compounds were prepared according to the general procedure: 1-(α-deuteriobenzyl $)-4,6$-diphenylpyrimi-din- $2(1 \mathrm{H}$)-one (20 b) $(90 \%$), prisms from EtOH, m.p. 160 $161{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 81.5$; N, 8.2. $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{DN}_{2} \mathrm{O}$ requires C , 81.4; $\mathrm{N}, 8.2 \%$); 1-(α-acetylbenzyl) $-4,6$-diphenylpyrimidin$2(1 \mathrm{H})$-one $(20 \mathrm{c})(48 \%)$, plates from EtOH, m.p. $184-185{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 78.7 ; \mathrm{H}, 5.7$; N, 7.4. $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C , $78.9 ; \mathrm{H}, 5.3 ; \mathrm{N}, 7.4 \%)$; $1-(\alpha$-benzoylbenzyl $)-4,6$-diphenyl-pyrimidin-2 (1H)-one (20d) (52\%), plates from EtOH, m.p. $168-170^{\circ} \mathrm{C}$ (Found: C, 81.4; H, 5.0; N, 6.3. $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 81.4 ; \mathrm{H}, 5.0 ; \mathrm{N}, 6.3 \%)$; 4,6-diphenyl-1-[α-(4-toluoyl)benzyl]pyrimidin- $2(1 \mathrm{H}$)-one (20 e) (54%), plates from EtOH, m.p. 140-142 ${ }^{\circ} \mathrm{C}$ (Found: C, 81.2; H, 5.6; N, 6.0. $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $\left.81.6 ; \mathrm{H}, 5.3 ; \mathrm{N}, 6.1 \%\right)$; $1-(\alpha-$ ethoxycarbonylbenzyl)-4,6-diphenylpyrimidin-2(1H)-one (20f) (35%) (isolated by prep. t.l.c.), prisms from $95 \% \mathrm{EtOH}$, m.p. $228-230{ }^{\circ} \mathrm{C}$ (Found: C, 76.0; H, 6.8; N, 5.3. $\mathrm{C}_{26}{ }^{-}$ $\mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 76.1 ; \mathrm{H}, 6.8 ; \mathrm{N}, 5.3 \%\right)$; 1-(2,2-diphenyl-2-hydroxy-1-phenyl)ethyl-4,6-diphenylpyrimidin$2(1 \mathrm{H})$-one $(20 \mathrm{~g})(20 \%)$, prisms from 95% EtOH, m.p. $229^{\circ} \mathrm{C}$ (decomp.) (Found: C, 82.7; H, 5.4; N, 5.3. $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 83.0 ; \mathrm{H}, 5.4 ; \mathrm{N}, 5.4 \%)$; 1-[2-hydroxy-2-(4-methylphenyl)-1-phenyl]ethyl-4,6-diphenylpyrimidin-2(1H)one (20 h) (40%) (isolated by prep. t.l.c.), prisms from 95% $\mathrm{EtOH}, \mathrm{m} . \mathrm{p} .230^{\circ} \mathrm{C}$ (decomp.) (Found: C, $81.6 ; \mathrm{H}, 5.7$; N, 6.2. $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $\left.81.2 ; \mathrm{H}, 5.7 ; \mathrm{N}, 6.1 \%\right)$; $1-(\alpha-$ methylbenzyl)-4,6-diphenylpyrimidin- $2(1 \mathrm{H}$)-one (20i) (40%),
plates from toluene, m.p. $170-170.5^{\circ} \mathrm{C}$ (Found: C, 81.7; $\mathrm{H}, 5.5 ; \mathrm{N}, 7.9 . \quad \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 81.8 ; \mathrm{H}, 5.7 ; \mathrm{N}$, 7.9%) ; 1-(α-ethylbenzyl)-4,6-diphenylpyrimidin-2(1H)-one $(20 \mathrm{j})(33 \%)$ (isolated by prep. t.l.c.), prisms from 95% $\mathrm{EtOH}, \mathrm{m} . \mathrm{p} .218{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 81.8; H, 6.3; N, 7.6. $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 81.9 ; \mathrm{H}, 6.0 ; \mathrm{N}, 7.6 \%\right)$: $1-$ (α-deuteriobenzyl)-4,6-di-p-tolylpyrimidin- $2(1 \mathrm{H}$)-one (21b) $\left(85 \%\right.$), needles from 95% EtOH, m.p. $207-210^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 81.5 ; \mathrm{N}, 7.6 . \quad \mathrm{C}_{25} \mathrm{H}_{21} \mathrm{DN}_{2} \mathrm{O}$ requires $\mathrm{C}, 81.7 ; \mathrm{N}, 7.6 \%$); 1-(α-methylbenzyl)-4,6-di-p-tolylpyrimidin-2(1H)-one (21i) (95%), prisms from $95 \% \mathrm{EtOH}$, m.p. $186.5-187^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 81.9 ; \mathrm{H}, 6.5 ; \mathrm{N}, 7.3 . \quad \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 81.7 ; \mathrm{H}$, 6.3 ; $\mathrm{N}, 7.3 \%$).

4-n-Butyl-3,4-dihydro-4,6-di-p-tolylpyrimidin-2(1H)-one
(30).-To 1 -methyl-4, 6 -di- p-tolylpyrimidin- $2(1 \mathrm{H})$-one (25) ($1.0 \mathrm{~g}, 3.4 \mathrm{mmol}$) in dry THF (20 ml) at $0^{\circ} \mathrm{C}$, under $\mathrm{N}_{2}, \mathrm{n}$ -butyl-lithium ($0.22 \mathrm{~g}, 3.4 \mathrm{mmol}$) was added. Stirring was continued for 1 h at $0^{\circ} \mathrm{C}$ and for a further 0.5 h at $20^{\circ} \mathrm{C}$. Water (1 ml) was added and the solvent removed at $30-40$ ${ }^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$. The residue in EtOAc (50 ml) was washed with water $(2 \times 25 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated at $30-40{ }^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$. Prep. t.l.c. [EtOAc-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$) ($65: 35$)] gave the title compound (0.5 g , 42%) as needles (EtOH), m.p. $147-147.5^{\circ} \mathrm{C}$ (Found: C, 79.1; $\mathrm{H}, 8.3 ; \mathrm{N}, 8.1 . \quad \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 79.3 ; \mathrm{H}$, $8.0 ; \mathrm{N}, 8.0 \%) ; \nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 3200(\mathrm{~N}-\mathrm{H})$ and $1650 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.3-7.0(8 \mathrm{H}, \mathrm{m}), 5.74(1 \mathrm{H}, \mathrm{d}, J 2$ $\mathrm{Hz}), 4.87(1 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz}), 2.8(3 \mathrm{H}, \mathrm{s}), 2.3(3 \mathrm{H}, \mathrm{s}), 2.28(3$ $\mathrm{H}, \mathrm{s}), 1.82(2 \mathrm{H}, \mathrm{m}), 1.3(2 \mathrm{H}, \mathrm{m})$, and $0.84(3 \mathrm{H}, \mathrm{t}, J 7$ Hz).

3,6-Dihydro-1,3-dimethyl-6-(1,2-dihydro-2-oxo-4,6-di-p-tolylpyrimiainylmethyl)-4,6-di-p-tolylpyrimidin- $2(1 \mathrm{H})$ one
(28).-LTMP (4.5 mmol) was prepared in situ from n-butyllithium ($2.86 \mathrm{ml}, 4.5 \mathrm{mmol}$ of 1.0 m) and 2,2,6,6-tetramethylpiperidine ($0.63 \mathrm{~g}, 4.5 \mathrm{mmol}$), under N_{2} at $-20^{\circ} \mathrm{C}$. Dry THF (6 ml) was added, the whole cooled to $-76{ }^{\circ} \mathrm{C}$, and 1 -methyl-4,6-di-p-tolylpyrimidin-2($1 H$)-one ($1.0 \mathrm{~g}, 3.5 \mathrm{mmol}$) in dry THF (25 ml) added. After 45 min , MeI $(0.6 \mathrm{~g}, 4.9$ mmol) was added, stirring continued for 1 h at $-76{ }^{\circ} \mathrm{C}$, and for a further 12 h at $20^{\circ} \mathrm{C}$. Water (1 ml) was then added, the solvent removed at $40-50^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$, and the residue taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})$, washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$, and dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$). The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was evaporated at $40-50^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$. Prep. t.l.c. [EtOAclight petroleum (b.p. $60-80{ }^{\circ} \mathrm{C}$) (55:45)] gave the title compound ($0.11 \mathrm{~g}, 10 \%$) as prisms, m.p. $286.5-289{ }^{\circ} \mathrm{C}$ (EtOH) (Found: C, 78.8; H, 6.5; N, 9.2. $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.8 ; \mathrm{H}, 6.4 ; \mathrm{N}, 9.4 \%)$; $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1650$ $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.92-7.00(16 \mathrm{H}, \mathrm{m}), 6.56(1 \mathrm{H}, \mathrm{s})$, $5.36(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.75(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.54(1 \mathrm{H}, \mathrm{s})$, $2.5(3 \mathrm{H}, \mathrm{s}), 2.31(3 \mathrm{H}, \mathrm{s}), 2.28(3 \mathrm{H}, \mathrm{s}), 2.22(3 \mathrm{H}, \mathrm{s}), 2.19$ $(3 \mathrm{H}, \mathrm{s})$, and $1.68(3 \mathrm{H}, \mathrm{s}) ; m / e 594.29\left(M^{+}, 0.12\right), 305.16$ (100), 261.15 (0.81), and 132.08 (12.48).

3-Ethyl-3,6-dihydro-1-methyl-2-oxo-6-(1,2-dihydro-2-oxo-4,6-di-p-tolylpyrimidinylmethyl)-4,6-di-p-tolylpyrimidin-
$2(1 \mathrm{H})$-one (29).-1-Methyl-4,6-di-p-tolylpyrimidin-2(1H)one ($1.0 \mathrm{~g}, 3.5 \mathrm{mmol}$) in THF (25 ml) was added to a solution [THF (10 ml)] of LTMP (4.5 mmol) (prepared as above) at $-76{ }^{\circ} \mathrm{C}$. After 45 min ., EtI ($0.75 \mathrm{~g}, 4.8 \mathrm{mmol}$) was added, stirring continued for 1 h at $-76^{\circ} \mathrm{C}$ and for a further 12 h at $20^{\circ} \mathrm{C}$. Work-up of the reaction was as above. Prep. t.l.c. separation [EtOAc-light petroleum (b.p. 60-80 $\left.\left.{ }^{\circ} \mathrm{C}\right)(55: 45)\right]$ gave the title compound $(0.163 \mathrm{~g}, 16 \%)$ as yellow prisms, m.p. $250-252{ }^{\circ} \mathrm{C}\left(\mathrm{PhCH}_{3}\right)$ (Found: C, 78.8; H, $6.5 ; \mathrm{N}, 9.2 . \mathrm{C}_{40} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.9 ; \mathrm{H}, 6.6 ; \mathrm{N}$,
$9.2 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1650 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 8.0-7.0$ $(16 \mathrm{H}, \mathrm{m}), 6.64(1 \mathrm{H}, \mathrm{s}), 5.34(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{d}$, $J 12 \mathrm{~Hz}), 4.56(1 \mathrm{H}, \mathrm{s}), 3.90(1 \mathrm{H}$, sextet), $3.10(1 \mathrm{H}$, sextet), $2.36(6 \mathrm{H}, \mathrm{s}), 2.26(3 \mathrm{H}, \mathrm{s}), 2.24(3 \mathrm{H}, \mathrm{s}), 1.70(3 \mathrm{H}, \mathrm{s})$, and $0.78(3 \mathrm{H}, \mathrm{t}) ; m / e 608.31\left(M^{+}, 0.05\right), 319.17$ (100), 305.16 (2.22), and 132.08 (2.82).

We thank the Leverhulme Foundation for a Fellowship (to N. K. P.) and the Consejo Nacional de Ciencia y Tecnologia (Mexico) for a scholarship (to H. J. S. Z.).
[1/188 Received, 9th February, 1981]

REFERENCES
${ }^{1}$ (a) A. R. Katritzky, N. E. Grzeskowiak, T. Siddiqui, C. Jayaram, and S. N. Vassilatos, J. Chem. Res., in the press; (b) A. R. Katritzky, J. Arrowsmith, Zakaria bin Bahari, C. Jayaram, T. Siddiqui, and S. Vassilatos, J. Chem. Soc., Perkin Trans. 1, 1980, 2851; (c) A. R. Katritzky, N. E. Grzeskowiak, H. J. Salgado, and Zakaria bin Bahari, Tetrahedron Lett., 1980, 21, 4451.
${ }^{2}$ (a) CIBA Ltd., Fr. P. 1,396,684/1965 [Chem. Abstr., 1965, 63, $9965 d]$; (b) V. P. Mamaev, Biol. Akt. Soedin., Akad Nauk SSSR, 1965, 38, [Chem. Abstr., 1965, 63, 18081f].
${ }^{3}$ R. E. Ludt, J. S. Griffiths, K. N. McGrath, and C. R. Hauser, J. Org. Chem., 1973, 38, 1668.
${ }^{4}$ G. E. Hardtmann and F. G. Kathawala, (ier. P. 2,056,406/ 1971 [Chem. Abstr., 1971, 75, 63813m].
${ }_{5}$ C. Kashima, Y. Yokota, T. Nishio, and A. Katoh. Heterocycles, 1980, 14, 120 .

